Interfacial Formation of Porous Membranes with Poly(ethylene glycol) in a Microfluidic Environment
نویسندگان
چکیده
In a microfluidic environment, the liquid– liquid interface, formed by laminar flows of immiscible solutions, can be used to generate thin membranes via interfacial polymerization. Because these thin nylon membranes have a very small pore size or lack porosity entirely, their utilization in some biological applications is greatly limited. We introduce an in situ fabrication method using the interfacial reaction of a two-phase system to generate a porous nylon membrane. The membranes were characterized with scanning electron microscopy and fluorescent beads. Scanning electron microscopy micrographs verified the asymmetrical structure of the porous membrane, and the membrane pore sizes ranged from 0.1 to 1 lm. 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110: 1581–
منابع مشابه
Effect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation
Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...
متن کاملDeveloping of Ethylene Glycol as a New Reducing Agent for Preparation of Pd-Ag/PSS Composite Membrane for Hydrogen Separation
In the present work, for the first time, a palladium-silver membrane has been prepared by electroless plating on the surface of a porous stainless steel disk by using ethylene glycol as a new reducing agent and polyol process. The reducing action of ethylene-glycol in the presence of PVP as a protecting surface agent produces a membrane with finely divided powder and nano-sized pores. Furthermo...
متن کاملEffect of Ethylene Glycol as Pore Former on Polyphenylsulfone Hollow Fiber Membrane for Crude Palm Oil Deacidification through Membrane Contactor
In this study, polyphenylsulfone (PPSU) hollow fiber membrane was fabricated via a wet spinning method with the addition of ethylene glycol (EG) in the range of 0-10 wt% as the additive. The EG was added to improve the membrane pore formation and interconnectivity for better membrane contactor performance in extracting and removing the free fatty acid (FFA) from crude palm oil (CPO). Four diffe...
متن کاملA 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
In this work, we demonstrate the immunocapture and on-line fluorescence immunoassay of protein and virus based on porous polymer monoliths (PPM) in microfluidic devices. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] monoliths were successfully synthesized in the polydimethylsiloxane (PDMS) microfluidic channels by in situ UV-initiated free radical polymeriza...
متن کاملPhotochemical Synthesis and Versatile Functionalization Method of a Robust Porous Poly(ethylene glycol methacrylate-co-allyl methacrylate) Monolith Dedicated to Radiochemical Separation in a Centrifugal Microfluidic Platform
The use of a centrifugal microfluidic platform is an alternative to classical chromatographic procedures for radiochemistry. An ion-exchange support with respect to the in situ light-addressable process of elaboration is specifically designed to be incorporated as a radiochemical sample preparation module in centrifugal microsystem devices. This paper presents a systematic study of the synthesi...
متن کامل